

Colle du 17/06 - Sujet 1 Géométrie et révisions

Exercice 1. On note E l'ensemble des suites réelles bornées. Montrer que

$$\varphi : \left((u_n)_{n \in \mathbb{N}}, (v_n)_{n \in \mathbb{N}} \right) \mapsto \sum_{k=0}^{+\infty} u_k v_k e^{-k},$$

est un produit scalaire.

Exercice 2. Dans l'espace, on considère $\mathcal{A}:$ $\begin{cases} x=1\\ y^2+z^2-4y=0 \end{cases}$ et $\mathcal{B}:$ $\begin{cases} z=1\\ x^2+y^2-2x-4y+2=0 \end{cases}$

- 1. Reconnaitre \mathcal{A} et \mathcal{B} .
- 2. Montrer que \mathcal{A} et \mathcal{B} sont contenus dans une sphère dont on déterminera les caractéristiques.

Exercice 3. Soit $f: x \mapsto \arctan\left(\frac{2x}{1-x^2}\right) - 2\arctan\left(x\right)$.

- 1. Simplifier f à l'aide de sa dérivée.
- 2. Retrouver le résultat de la question précédente par une autre méthode.

Colle de mathématiques PTSI

2023-2024

Colle du 17/06 - Sujet 2 Géométrie et révisions

Exercice 1. Calculer pour tout
$$n \in \mathbb{N}^*$$
, $D_n = \begin{vmatrix} 1 & 1 & \cdots & 1 \\ 1 & 2 & \ddots & \vdots \\ \vdots & \ddots & \ddots & 1 \\ 1 & \cdots & 1 & n \end{vmatrix}$.

Exercice 2. On considère les plans

$$\mathcal{P}_1 : ax + y + z + 1 = 0$$

 $\mathcal{P}_2 : x + ay + z + a = 0$
 $\mathcal{P}_3 : x + y + az + b = 0$

Déterminer les réels a et b pour que l'intersection de ces trois plans soient une droite. Préciser dans ce cas l'équation cartésienne et paramétrique de la droite.

Exercice 3. Soit $f: \mathbb{R}_+ \to \mathbb{R}_+$ continue telle que $\lim_{x \to +\infty} f(x) = \ell \in \mathbb{R}_+$.

- 1. Montrer qu'il existe $a \in \mathbb{R}_+$ tel que f(a) = a.
- 2. La fonction f est-elle bornée?

Colle de mathématiques PTSI

2023-2024

Colle du 17/06 - Sujet 3 Géométrie et révisions

Exercice 1. Déterminer les valeurs de
$$a$$
 pour lesquelles $A = \begin{pmatrix} 0 & -1 & -1 & -1 \\ a & 0 & -1 & -1 \\ a & a & 0 & -1 \\ a & a & a & 0 \end{pmatrix}$ est inversible.

Exercice 2. On considère $\mathcal{D}: \begin{cases} x-z-4=0 \\ x+y-3z-7=0 \end{cases}$, $c \in \mathbb{R}$, $\Omega(0,1,c)$ et $\mathcal{C}: \begin{cases} x^2+y^2+z^2-2y-1=0 \\ z=0 \end{cases}$

- 1. Calculer la distance de Ω à \mathcal{D} .
- 2. Préciser C.
- 3. Montrer que Ω est sur l'axe de \mathcal{C} .
- 4. Soit $\mathcal S$ la sphère contenant $\mathcal C$ de centre Ω . Déterminer son rayon.
- 5. Déterminer les valeurs de c pour lesquelles S est tangente à D et préciser alors le plan tangent à la sphère dans ces cas.

Exercice 3. Soit $A = \begin{pmatrix} 1 & 1 & 1 \\ 1 & j & j^2 \\ 1 & j^2 & j \end{pmatrix}$. Déterminer les puissances de A. La matrice A est-elle inversible? Si oui calculer son inverse.